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Introduction

Knowledge of jet mixing aerodynamics is vital to
several areas of commercial and military aircraft design,
such as jet propulsion efficiency, propulsion integration,
aeroacoustics, and jet interference with aircraft structure.
Initial jet flow conditions are determined by nozzle exit
pressure, temperature, Mach number, and nozzle geome-
try. Once the flow leaves the jet nozzle, the jet flow
becomes a free shear layer. The action of turbulence
dominates flow developments farther downstream. As
such, jet flow properties are difficult to measure or pre-
dict analytically.

When Prandtl introduced his mixing length hypo-
thesis for turbulent flows, a brief analysis of a fully
mixed jet was given as an example. Early analyses of jet
mixing behavior were based mainly on this mixing
length hypothesis and one-dimensional momentum the-
ory. (See refs. 1–4.) Mean flow properties derived from
these analytical models compare well with experimental
measurements of jets at low subsonic speeds. However,
data from jet flow measurements in the high subsonic
and supersonic speed ranges (ref. 5) indicate signifi-
cantdeparture from the results obtained by using one-
dimensional momentum theory.

Jet flow contains a rich combination of flow inter-
actions and flow physics. These combinations include
turbulent mixing and compressibility effects such as
isentropic expansion and shock. Other factors may
include chemical reactions or shear layer instability.

Subsonic jet flow features are relatively simple. The
main variable in the flow is shear layer development
along the streamwise direction. The static pressure value
is almost constant with the ambient pressure. In the
absence of a pressure gradient, no significant inviscid
flow feature will appear in a subsonic jet. According to
reported experimental measurements, all turbulent axi-
symmetric subsonic jets below Mach 0.6 are similar if

the flow variables are normalized by jet density and noz-
zle exit velocity.

On the other hand, supersonic jet flow features can
be very complex. Because of the supersonic nozzle exit
Mach number, jet exit pressure can differ from ambient
pressure. This pressure difference between the jet and the
ambient fluid must be resolved locally either across an
oblique shock, by a prominent streamline curvature at the
jet boundary, or by a Mach disk inside the jet. In addi-
tion, shocks formed near the nozzle exit may reflect
repeatedly at the sonic line in the shear layer. Although
the convected turbulence interacts with shocks in the jet,
the position of the reflected shock depends on the loca-
tion of the sonic line in the turbulent shear layer. Such
interdependence of flow interactions can become very
complex.

Earlier jet flow analysis codes, with or without
chemical interactions included, were formulated with
simplified assumptions of the Navier-Stokes equations
and the turbulence model to provide the best jet flow
simulation within modest limits of computing resources
available during this time. Analytical methods and simu-
lation codes developed by this approach have been suc-
cessfully applied to problems in air-breathing engine
development, acoustics, and rocket propulsion. (See
refs.6–12.) However, there are some drawbacks to this
approach. First, simplified assumptions are often difficult
to justify. Second, application of the simplified formula-
tions is limited to jet flow simulation. The formulations
are difficult to integrate with computational codes for air-
frame aerodynamics when performing propulsion air-
frame integration analysis. It is preferable in such cases
to perform the analysis with the three-dimensional
Navier-Stokes equations without empirical assumptions
for jet flow alone.

For general use of jet flow simulation, some basic
requirements must be met. The Navier-Stokes code
should be upwind biased to capture internal shocks and

Abstract

This report presents a unified method for subsonic and supersonic jet analysis
using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was
used to obtain solutions for axisymmetric jets with on-design operating conditions at
Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and
Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This
report discusses computational methods, code implementation, computed results, and
comparisons with available experimental data. Very good agreement is shown
between the numerical solutions and available experimental data over a wide range
of operating conditions. The Navier-Stokes method using the standard Jones-Launder
two-equation k-ε turbulence model can accurately predict jet flow, and such predic-
tions are made without any modification to the published constants for the turbulence
model.
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other jet flow discontinuities. The code should also be
fully three-dimensional in space because the relations
between turbulent kinetic energy and Reynolds stresses
are basically three-dimensional. The turbulence model
should be capable of providing a time scale and a
consistent description of the production and transport
properties of turbulent kinetic energy. Therefore, a two-
equation turbulence closure model is required.

Many upwind-biased three-dimensional Navier-
Stokes codes are available that meet the jet flow simula-
tion requirement. However, the availability of codes with
a robust two-equation turbulence mode in this class is
limited. In this report, the PAB3D code is used for all jet
flow computations. The purpose of this report is to show
the feasiblity of establishing a unified method for sub-
sonic and supersonic jet analysis with a general purpose
three-dimensional Navier-Stokes code.

The PAB3D code is developed to obtain numerical
solutions to the Reynolds averaged Navier-Stokes equa-
tions in three-dimensional spatial domain. The main
solver algorithm is the upwind Roe scheme, for which
the numerical dissipation is small. The Jones-Launder
(ref. 13) two-equationk-ε turbulence closure model is
used to compute the turbulent stresses in the flow. This
approach is chosen for jet flow analysis because it is con-
sistent in tracking production and transport properties of
turbulence kinetic energy and dissipation scale length in
the shear flow. In the Jones-Launderk-ε turbulence
model, several empirical constants are required. Only the
published values for these constants are implemented in
the PAB3D code. These values are fixed for all computa-
tional applications of the PAB3D code.

This report describes the mathematical formulation
of governing equations, the turbulence model, and the
adaptive grid generation algorithm, along with the
numerical implementation of each. The adaptive grid
generation algorithm is designed especially for nonaxi-
symmetric jet computations.

Several categories of jet flow computations are
described separately in the section “Results and Discus-
sion.” The first category describes axisymmetric jets
operating at on-design exit conditions so that the jet exit
pressure matches the ambient static pressure. Results are
obtained for jet exit Mach numbers ranging from 0.6
to 3.0. Computed velocity and turbulence intensity distri-
butions in the jet are compared with experimental data.
The second category presents results for supersonic jets
with internal weak shocks. The discussion includes com-
puted results for jet exit pressures above and below the
ambient static pressure to show characteristics of the
shock-containing supersonic jets. Computed results are
compared with available experimental data. The third
category of computed cases is axisymmetric supersonic

jets with embedded Mach disks. Flow conditions for
these jets are the result of a supersonic jet nozzle operat-
ing at pressures far from nozzle design value. One partic-
ular case details a Mach 1.5 nozzle operating at a nozzle
pressure ratio 3.15 times greater than the design value for
this nozzle. The last category includes supersonic jets
with nonaxisymmetric initial cross sections. Shear layer
development of these jets is very different from a typical
axisymmetric jet because of added geometrical degrees
of freedom. The development of elliptic, rectangular, and
square jets operating at the same exit pressure and Mach
number is compared.

Symbols

a local speed of sound

e internal energy per unit mass

C1, C2, Cµ constants in two-equation turbulence
model

F, G, H inviscid flux components in Navier-Stokes
equations

Fv, Gv, Hv viscous flux components in Navier-Stokes
equations

total flux vectors (inviscid plus viscous) in
Navier-Stokes equations

f1, f2, fn monitoring function for grid adaptation

i, j, k grid index inξ-, η-, ζ-directions

J Jacobian of coordinate transformation

k turbulent kinetic energy

Lc jet potential core length

l1 shock cell length measured from nozzle
exit to first shock intersection at jet
centerline

M Mach number

NPR nozzle pressure ratio,

n distance in a direction normal to a solid
wall

production term for turbulent kinetic
energy

p pressure

pe jet exit static pressure

po ambient static pressure

pt jet total pressure

conservative variable vector in Navier-
Stokes equations

R jet exit radius or area equivalent radius

F̂ Ĝ Ĥ, ,

pt

po
------

P

Q̂
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S source function in Navier-Stokes
equations

T temperature

t time

Ue jet exit velocity

Uc jet centerline velocity

u, v, w velocity components inx-, y-, and
z-directions

components of turbulence velocity
fluctuation

urms root-mean-square value of turbulence

velocity fluctuation,

ut turbulence velocity fluctuation

W shock cell length measured from nozzle lip
to position of first shock reflection in shear
layer

x, y, z spatial coordinates

Γ compressibility correction factor

δij Kronecker delta

ε turbulent kinetic energy dissipation rate

µ dynamic coefficient of viscosity

ν kinematic coefficient of viscosity

ξ, η, ζ generalized coordinate as function ofx, y,
andz

ρ density

σε, σk constants in two-equation turbulence
model

τ shear and normal stress components

Subscripts and superscripts:

e jet exit condition

k turbulent kinetic energy

L laminar quantities

o free-stream condition

T turbulence related quantities

v viscous component of flux vectors

ε turbulent energy dissipation

Governing Equations

The governing equations of the Reynolds averaged
Navier-Stokes formulation include the conservation
equations for mass, momentum, and energy and the
equation of state for gas. In this study, the perfect gas law
is chosen to represent the properties of air. For a turbu-
lent flow, the Reynolds stresses can be represented by

turbulence closure models for practical applications.
Because one of the dominant factors governing jet
dynamics is turbulent shear layer mixing, the turbulence
closure model is essential for realistic jet flow simulation
when using Navier-Stokes methods. The Jones-Launder
(ref. 13) two-equationk-ε turbulence model is used in
this study. The Navier-Stokes equations and the mathe-
matical representation of the two-equation turbulence
model are described briefly in separate subsections of
this report.

For computation of nonaxisymmetric jet flows, a
special requirement in grid generation arises. High grid
density is required for regions occupied by the shear
layer and the embedded shock so that high gradients of
mean flow and turbulence quantities can be accurately
represented in the numerical solution. However, the posi-
tion of the shear layer and the shock positions of a non-
axisymmetric jet are not known in advance. This special
requirement can be met by using an adaptive grid. The
analytical basis for an adaptive grid is described in the
report section “Grid Adaptation Strategy” following
discussions of Navier-Stokes equations and the Jones-
Launderk-ε turbulence model.

Navier-Stokes Equations

The mass, momentum, and energy conservation
equations of the Reynolds averaged Navier-Stokes equa-
tions can be written in terms of generalized coordinates
and in a conservative form as follows:

(1)

wheret, ξ, η, andζ are the independent variable for time
and the general curvilinear coordinates in the grid
domain,  is the conservative flow variable vector (ρ,
ρu, ρv, ρw, ρe) in generalized coordinates,  are
the total generalized flux vectors including inviscid and
viscous components, and the source termS is zero for the
Navier-Stokes equations in this form. This equation is
introduced here mainly to indicate the relationship
between the basic Navier-Stokes equations and the two-
equation turbulence model equations. Reference 14 pre-
sents details of the Navier-Stokes equations as applied in
the PAB3D code. A simplified form of the Navier-Stokes
equations which omits all the streamwise derivatives of
the Reynolds stresses is used in the PAB3D code. Omis-
sion of these terms is done for computational economy
and does not introduce significant computation error.
The remaining cross stream derivatives are numerically
implemented at several levels in PAB3D. The thin layer
Navier-Stokes approximation is one option for the user.
This study uses the option of uncoupled Reynolds stress
derivatives in two directions.

ui′

ui′ ui′

∂Q̂
∂t
------- ∂F̂

∂ξ
------- ∂Ĝ

∂ζ
------- ∂Ĥ

∂η
-------+ + + S=

Q̂
F̂ Ĝ Ĥ, ,
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Jones-Launder Two-Equation Turbulence Model

The Jones-Launder formulation for the two-equation
turbulence model uses the turbulent kinetic energyk and
the dissipation rateε as the principal variables. This
study uses the expanded three-dimensional form (ref. 15)
of the original Jones-Launder model. This modified for-
mulation is fully three-dimensional, and the governing
equations are written in a conservative form as general-
ized coordinates. The governing equations can be cast in
the same form as the Navier-Stokes equations, where

Here,  is the full three-dimensional production term
defined as

or is expanded to

where

In the definitions ofSε andSk, the termsLε andLk are
near-wall effects which are not important to free jet cal-
culations, and  denotes derivatives in a direction
normal to the solid wall boundary. However, these terms
are included in the PAB3D code. The functionΓ is the
compressibility correction function. Several corrections
have been developed by different authors. Among the
widely used compressibility correction functionsΓ are
those proposed by Sarkar et al. (ref. 16) and by Wilcox
(ref. 17).

Sarkar model (ref. 16):

(2)

Wilcox model (ref. 17):

(3)

whereH is the Heaviside function,  is
the local turbulence Mach number,a is the local speed of
sound, and  is a cutoff turbulence Mach number.
The commonly accepted value  is used in
the PAB3D code. The compressibility correction factor
is required when the local flow Mach number is greater
than 1.0. In the Sarkar model, the compressibility correc-
tion is activated everywhere in the flow field when
applied for a given computation. The Wilcox model is a
modification of the Sarkar model so thatΓ is nonzero
only for values of  greater than  This condi-
tion implies that compressibility correction is activated
for local flow Mach numbers near or greater than 1, with
no correction otherwise.

Grid Adaption Strategy

For an accurate representation of the flow field, suf-
ficient grid density must be provided in the mixing
region. Unlike an axisymmetric jet, the nonaxisymmetric
jet is not self-similar and can evolve in dramatically dif-
ferent fashion in different sectors of the jet cross section.
Because the position of the shear layer is not known in
advance, a large number of predetermined grid points

Q̂ ρε
ρk 
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are required to provide high density coverage of the
three-dimensional space if a fixed grid is used for the
computations. An alternative is to provide high grid den-
sity in the appropriate locations by using an adaptive grid
strategy.

For jet plume analysis, high grid density is required
in high velocity gradient regions in the shear layer and
in high pressure gradient regions near shock fronts. The
number of grid points in each direction of a structured
grid is fixed. Local grid density can be varied by redis-
tributing the available grid points in the computational
domain to match selected flow characteristics such as
pressure and velocity gradients. Various methods can be
used to redistribute grid density according to given multi-
ple functional requirements. In this study, the equi-
distribution principle and the alternate direction grid
adaption method published by Eiseman et al. (refs.15,
18, and 19) are chosen as the basis for adaptive grid
implementation in the PAB3D code.

In the equidistribution approach, a monitoring func-
tion which governs grid density over the computation
domain is defined. The monitoring function can be geo-
metrically represented as a hypersurface in a space with
dimensions that are one higher than the spatial dimen-
sions of the computational domain. The process of grid
adaption begins by constructing a uniform mesh over
themonitoring surface. For a one-dimensional case, the
monitoring surface is a curve over the linear spatial
domain. Equidistribution is simply a uniform distribution
of points at equal arc distances on the entire length of the
monitoring curve. When this distribution of points is pro-
jected back to the one-dimensional baseline in the physi-
cal domain as adapted grid points, the grid density is
proportional to the gradient of the monitoring function.
For a two-dimensional grid domain, the monitoring sur-
face is a curved surface in three dimensions over the two-
dimensional physical space. The equidistribution process
involves constructing a mesh system over the curved
monitoring surface so that all the grid cells enclose
approximately equal surface areas. Once the equidistri-
bution construction is complete, the mesh pattern on the
monitoring surface is projected onto the original physical
domain. Similar to the one-dimensional case, high grid
densities are again obtained in regions where the moni-
toring function has high gradients.

If the monitoring surface is assumed to represent
mountains and valleys in a landscape, the previously
mentioned process is similar to making a contour map of
this landscape. Steep slopes in the landscape are natu-
rally represented by tightly packed contour lines on the
map, which is a horizontal projection of the original
three-dimensional surface. Visualization of the monitor-
ing surface can be difficult for a three-dimensional spa-

tial domain. However, the algebra and the geometry for
the adaption process remain unchanged. In addition to
equidistribution of arc lengths or areas on the hyper-
surface, normal curvature of the monitoring surface can
also be used as a weighting function to provide additional
mesh density control.

The alternative direction adaption proposed by Eise-
man simplifies the equidistribution procedure by per-
forming arc length equidistribution on the monitoring
surface along each family of coordinate lines. If cell
skewness remains within reasonable limits, equidistribu-
tion of all sides of the grid cells will also distribute the
cell area or volume into approximately equal sizes. How-
ever, orthogonality is not enforced in this procedure. The
degree of grid concentration for given values of the gra-
dients of a monitoring function is controlled by a propor-
tional constant. Since orthogonality is not enforced in the
alternate direction equidistribution procedure, excessive
cell skewness and cell collapse can occur if the propor-
tional constant is given too high a value.

For grid adaption to more than one flow quantity,
multiple monitoring functions can be used. A simple
approach is to combine all monitoring functions as a
single weighted sum. The approach of Eisman and
Brockelie (ref. 20) treats each monitoring function as an
additional geometrical dimension (which is orthogonal to
all previous dimensions). In this approach, grid features
represented in each monitoring function remain distinct.
The differential arc length element can be given as

(4)

whereds0 is the arc length in the physical or grid domain,
ds1 is the arc length on the monitoring surface, grad
denotes a component of the gradient in the tangential
direction of the coordinate curves, andw(s0) is an
optional weighting function which is proportional to the
curvature of the monitoring surface.

A modified approach called the sequential adaption
method is used in this paper. Assuming there are
N monitoring functions, the monitoring functions are
applied sequentially. After each step of adaption, the
mesh on the previous monitoring surface is treated as a
“stretched” uniform mesh to support the next monitoring
function. The arc length increments on each of the moni-
toring surfaces can be written as

(5)

Once the adaption process is completed over the last
monitoring function, the mesh coordinates are projected
sequentially back to all previous base surfaces. The

ds1 1 w s0( )+ 1 grad f 1( ) 2 grad f 2( ) 2 …+ + + ds0=

dsn 1 wn sn 1–( )+ 1 grad f n( ) 2+ dsn 1–= n 1 2 … N, , ,=( )
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last one is the physical space where an adapted grid is
established.

Where the curvature weighting functionsw1, …, wn
are zero, the sequential adaption method and the vector
monitoring function method are mathematically the
same. Only their geometrical interpretation and computa-
tional implementation are different.

Computational Methods

The simplified Reynolds averaged Navier-Stokes
equations and the Jones-Launderk-ε turbulence model
are implemented in the PAB3D code for general fluid
dynamics analysis in three-dimensional space. Distinc-
tive features of this code include provisions to accept a
multiblock grid with patched interface, compact memory
requirement, and solver options. In particular, a space-
marching solver with adaptive grid capability is available
for jet flow computation when flow conditions meet the
space-marching scheme criterion. For such cases, the
space-marching solution accuracy is indistinguishable
from accuracy obtained by using the time-marching
solver algorithm. The space-marching procedure can
complete a converged solution in approximately one-
twentieth the computer time required by the time-
marching solver to obtain a solution for the same flow
conditions.

Solver Algorithm

Three numerical schemes have been implemented in
the PAB3D code as solvers for the Navier-Stokes equa-
tions: the Van Leer flux-vector splitting scheme, the Roe
flux-difference splitting scheme, and a space-marching
scheme that is a modified version of the basic Roe
scheme. These schemes are implicit, upwind, and con-
structed by using the finite volume approach. Only the

inviscid portion of the flux vectors , , and  is sub-
jected to the splitting and upwind procedures. The diffu-
sion terms of the Navier-Stokes equations are centrally
differenced. Reference 14 details mathematical descrip-
tion of these schemes.

The flux-vector scheme and the flux-difference split-
ting scheme are used in all three computational direc-
tions. An updated solution at each iteration is obtained by
using an implicit procedure in the meshη,ζ-planes at
constant values ofξ and a relaxation procedure in the
ξ-direction consisting of a forward and a backward
sweep. This particular implementation strategy has an
advantage for computational efficiency. Since the met-
rics for the implicit procedure are required for only up to
three planes, the metric constants are recomputed one
plane at a time at the advancing front of the prevalent
sweep direction instead of being stored for the entire grid

domain. Moderate or large mesh sizes require an average
of only 22 words of memory for each gird point. This
highly efficient use of computer memory is obtained at a
modest cost of approximately a 3-percent increase in
computer time per iteration. The overall computer time
requirement per iteration per grid point is similar to other
codes of this type.

For time-marching solutions using the Van Leer or
the Roe scheme, each iteration count consists of either a
forward or a backward sweep in theξ-direction with one
step of implicit update of the solution in each of the cross
planes. The inviscid terms in the Navier-Stokes equa-
tions in the Roe scheme are cast in the form of an
approximate Riemann problem. The interface flux in the
streamwise direction is determined by separate terms,
depending on the quantities on the left (upstream) and the
right (downstream) sides of the interface. For a fully
supersonic flow, the information can travel only in the
flow direction. Such information is carried by the terms
representing upstream dependence. The terms which
carry the downstream dependence can be ignored with-
out introducing significant flow solution error. This state
of information transfer in the Roe scheme solver is true
for a broad category of subsonic and supersonic jet flows
where the streamwise pressure gradient is small. By
ignoring the downstream dependence terms in the Roe
scheme, the solver becomes the space-marching scheme.
Under this modified scheme, a solution is obtained plane
by plane from upstream to downstream by carrying out a
sufficient number of implicit iterations in each plane
until the convergence criterion is met. A solution for the
entire computational domain is established in a single
forward sweep.

The k-ε Turbulence Model

The governing equations of the Jones-Launder for-
mulation of thek-ε turbulence model are written as a pair
of coupled transport equations in conservative form. In
principle, this pair can be implemented together with the
Navier-Stokes equations as either a set of seven coupled
equations or a separate pair uncoupled from the Navier-
Stokes equations. The fully coupled approach would
cause serious problems such as a significant increase in
computational effort and working space in the computer
memory and numerical stiffness of the coupled set of
seven equations. In the PAB3D code, solutions of thek
and ε equations are decoupled from the Navier-Stokes
equations and from each other. Time step differences
remain in this uncoupled system of flow and turbulence
equations. However, the problem is circumvented by
solving thesek and ε equations with a CFL (Courant,
Fredricks, and Levy) number that is smaller by at least
a factor of 2. The potential difference in timewise devel-
opment of the flow variables and turbulence variables

F̂ Ĝ Ĥ
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has not led to any noticeable effect in either the overall
convergence rate or the quality of the solutions.

Multiblock Structure and Boundary Conditions

The PAB3D code is designed to handle complex
configurations by using several types of multizone,
multiblock grid topologies. A restricted option, which is
suitable for jet plume calculation with the space-
marching schemes, calls for streamwise division of the
computational domain into zones in theξ-direction. The
grid space in each zone can further be divided into blocks
in theη- andζ-directions. Otherwise, the code supports a
general multiblock scheme where the computational
domain can be divided into any collection of blocks.
Number of blocks, block size, and parametric orientation
are not restricted. The concept of zones is not relevant in
this general scheme. General patched block interface
communication is allowed. The only restriction for this
general multiblock connectivity scheme is that the con-
nected block interfaces are contiguous. A grid partition
feature is available in the PAB3D code for the conve-
nience of turbulence modeling. If different viscous stress
models are employed within a block, theξ-direction of
the block can be partitioned by choosing a starting index
for each viscous stress model.

The boundary conditions often used for jet computa-
tions include inflow, outflow, free stream, solid walls,
and geometrical symmetry. Three types of inflow bound-
ary conditions are provided: Riemannian characteristics,
fixed total temperature and total pressure, and a com-
pletely fixed set of five flow parameters. Two outflow
boundary conditions are needed: constant pressure for
subsonic flows and extrapolation for supersonic flows.
The Riemannian characteristics boundary condition is
used at free stream boundaries. On a solid boundary,
either a no-slip or an inviscid-slip boundary condition
can be specified. Finally, the symmetry boundary condi-
tions include mirror imaging across a plane in any orien-
tation and polar symmetry around an axis in the
streamwise direction.

In addition, a universal high-order symmetry bound-
ary condition for Navier-Stokes code applications is
developed in the course of this jet plume study. This uni-
versal symmetry boundary condition provides a simple
method for the user to specify a symmetry boundary con-
dition at a grid plane not aligned to a surface with a con-
stant physical coordinate value. Reference 14 details this
boundary condition.

Adaptive Grid Algorithm in the PAB3D Code

For nonaxisymmetric jet calculations in this report,
one quarter of the jet cross section is represented in the
grid domain. Hence, flow symmetry across both the hori-

zontal and the vertical axis is assumed. In each plane, the
grid is divided into two parts: a high density grid in the
near field of the jet flow and a low density grid for the far
field. Only the high density grid near the jet flow is
adapted to the flow solution. A Cartesian topology is
chosen for the initial unadapted high density grid. Grid
adaption proceeds from plane to plane in the streamwise
direction. Two monitoring functions are used for adapt-
ing the grid to the velocity and pressure gradients of the
flow solution. The monitoring functions are normalized
so that one constant is used for each function to control
the intensity of adaption. (See ref.21.) A single grid was
used in reference 21 to cover both the near field and the
far field. A third monitoring function was employed to
redistribute a uniform Cartesian grid to form a dense grid
zone in the near field and a sparse grid distribution in the
far field.

The adaptive grid procedure is coupled to the space-
marching solver in PAB3D. Grid indicesi, j, andk are
assigned to theξ, η, andζ coordinates of the generalized
coordinates. In the space-marching algorithm, a numeri-
cally converged solution is computed at eachj, k-plane
through multiple iterations. This solution is then coupled
to the next plane downstream, and the computational
process is repeated.

For jet flow computations considered in this report,
initial conditions for the first plane representing the flow
condition at the nozzle exit are prescribed according to
known nozzle operating conditions. The initial grid at the
first plane is generated externally according to the initial
flow conditions by using the same grid adaption proce-
dure as the one implemented in the PAB3D code. Once
the solution process is started, grid adaptions for subse-
quent grid planes are computed within the code. A grid is
created for the (i + 1)-plane by adapting the grid to the
numerically converged solution in thei-plane. The adap-
tive grid procedure is implemented as efficiently
as possible to match the high efficiency of the space-
marching solver. The computational efficiency of this
multiple function grid adaption procedure is analyzed
during this study. The time taken for grid adaption is
approximately 4 percent of the total time required for the
flow solver. Only 1 cycle of adaption is used for each
plane. The flow solution at each plane normally takes
approximately 20 to 30 iterations before nominal conver-
gence criterion is met.

Results and Discussion

Results of jet flow computations are presented
in several groups: jets operating at on-design conditions,
supersonic jets containing weak shocks, supersonic jets
containing strong shocks, and nonaxisymmetric super-
sonic jets. For these groups of computation, the initial
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flow condition for the jet is specified at the inflow
boundary of the computational grid. The internal flow
upstream of the jet nozzle is not modeled. Figure 1 shows
a sketch of the jet flow configuration and a typical com-
putational grid for on-design axisymmetrical jets.

On-design operation of a jet is defined as the condi-
tion for which the jet exit static pressure is identical to
the ambient static pressure. For a subsonic jet, the exit
static pressure is naturally adjusted to the ambient static
pressure. A supersonic jet flow is established by using a
convergent-divergent nozzle designed for a fixed Mach
number. The on-design nozzle pressure ratio (NPR),
defined aspt/po, is a fixed value for each given Mach
number. For jets operating at on-design NPR, pressure
gradients are very small in the entire flow domain.
Shocks in the flow domain are typically weak or absent
in on-design supersonic jets. The principal driving mech-
anism for on-design jet plume development is turbulent
mixing in the jet shear layer. This report computes on-
design jet flows by using the space-marching scheme in
PAB3D.

At off-design operating conditions, the initial jet
flow condition is either overexpanded or underexpanded.
Shock waves will appear in the jet flow. For a given noz-
zle geometry, the exit jet Mach number is fixed regard-
less of NPR (assuming that the NPR is high enough to
fully establish supersonic flow at the nozzle exit). At
NPR values sufficiently close to the design point, only
weak shocks are present in the jet flow and jet flow
development can be computed using the space-marching
solver in PAB3D.

Once strong shocks in the form of Mach disks appear
in the jet plume, the flow downstream of the shock
becomes subsonic. Furthermore, high static pressure
immediately downstream of the shock leads to rapid
acceleration and expansion of the subsonic flow. Hence,
a strong pressure gradient exists. The time-marching
solvers in the PAB3D code must then be used because
conditions permitting the use of the space-marching
scheme are violated in this region. However, the space-
marching method alone cannot detect the occurrence of a
Mach disk. The decision to use either the space-marching
or time-marching options in the PAB3D code for a par-
ticular case must be guided by tabulated experimental
data or by theoretical estimates. Reference 5 gives an
excellent reference for Mach disk formation in axisym-
metric jet plumes.

Jet exhaust nozzles of practical interest in propulsion
systems may have a nonaxisymmetric exit cross section.
The dynamic characteristics of nonaxisymmetric jets are
significantly more complex than those for axisymmetric
jets because of the added degrees of freedom in jet flow
geometry. The adaptive grid option in the PAB3D code

is used to provide appropriate grid density distribution
for the shear layer and shock regions in the jet flow. The
following subsections give detailed discussions of results
in each group of jet flow computations.

On-Design Circular Jet Plumes

Flow solutions for on-design circular jets within jet
exit Mach numbers ranging from 0.6 to 3.0 are computed
using the space-marching method in the PAB3D code. In
this series of jet flow simulations, the initial flow condi-
tion for the jet plume is specified at the inflow boundary
of the computational domain. A small velocity compo-
nent in the ambient air parallel to the jet flow direction is
required in the PAB3D code for maintaining numerical
stability of the space-marching scheme. A freestream
Mach number of 0.001 is sufficient in fulfilling this
numerical requirement.

The on-design jet grid is constructed as a single layer
wedge which covers a sector of 2.5° in the circumferen-
tial direction. Figure 1 shows general layout of this grid.
There are 400 uniformly sized grid cells in the stream-
wise direction covering a distance ofx/R= 40 and 48
grid cells in the transverse direction covering a radial dis-
tance ofy/R= 8. At the inflow station of the jet, the jet
plume is defined by 18 grid cells, and the remaining 30
grid cells cover the distance fromy/R= 1.0 to 8.0. The
initial shear layer region near the nozzle exit plane is
covered by 24 grid cells centered above and below the
nozzle lip. High grid density is provided in the shear
layer to capture the turbulent mixing process. As the jet
flow spreads downstream, approximately 30 grid cells
are located within the jet flow. For computational conve-
nience, the grid domain is divided into four blocks in the
streamwise direction. The grid domain can easily be
extended in the streamwise direction by adding more
blocks.

General features of jet flow computation using the
PAB3D code with the two-equationk-ε turbulence clo-
sure model are illustrated by the solutions of a typical
subsonic jet atM = 0.6. Compressibility correction for
the k-ε turbulence model is not needed in this com-
putation. Figure 2 shows the computed centerline veloc-
ity profile for the M = 0.6 jet. The centerline velocity
maintains its exit value for a distance up to approxi-
mately x/R= 12 and decreases farther downstream as a
result of turbulence mixing. The classical relation of
velocity decay is given by

(6)

whereLc is the intercept of thex−1 decay curve and hori-
zontal line uc(x)/Ue = 1.0 (referred to as the potential
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core length in jet flow literature). Figure 2 shows both
the computed centerline velocity profile and the classical
velocity decay as indicated by equation (6). Good agree-
ment is shown between the PAB3D solution and the
result obtained with equation (6).

Figure 2 also shows the computed centerline velocity
profiles for a Mach 2.0 jet operating on-design using the
Jones-Launderk-ε turbulence model with three different
methods of compressibility corrections. The compress-
ibility correction factor in thek-ε turbulence model has a
strong influence on jet flow development. Turbulence
mixing is strongest in the jet flow when no compressibil-
ity correction is applied. For this case, the potential core
length isLc/R= 17.2. The action of turbulence mixing in
the jet is weaker when compressibility corrections are
applied. The value ofLc/R is 22.6 and 25.2 for the Sarkar
and the Wilcox methods, respectively. The velocity
decay downstream of the end of the potential core is also
computed according to equation (6) and the value ofLc/R
for each case. The results are shown in figure 2.

Good agreement is observed between the PAB3D
solutions using the Sarkar and the Wilcox corrections
and their corresponding results using equation (6) for
uc/Ue greater than 0.7. Foruc/Ue less than 0.7, the
PAB3D solution begins to deviate from the classical 1/x
decay rate. For the solution without compressibility cor-
rection, the decay rate starts to deviate from the 1/x decay
at approximatelyuc/Ue = 0.8. Without compressibility
correction in thek-ε turbulence model, the predicted tur-
bulence level is too high for the Mach 2.0 supersonic jet
solution. This steep velocity decay is an indication of
excess mixing in the jet shear layer.

Figure 3 shows the downstream evolution of the
M = 0.6 jet velocity cross section. Atx/R= 0, the initial
velocity profile across the entire width of the jet nozzle
exit has a prescribed constant value ofUe. The cross sec-
tion atx/R= 5 (fig. 3) shows the initial development of a
thin shear layer, and the width of the potential core is
narrower than its width at the jet exit. The cross section
at x/R= 15 is located just downstream of the end of the
potential core. The velocity profile atx/R= 15 has not
yet attained a Gaussian distribution. However, the Gauss-
ian velocity distribution has been established atx/R= 25.
Figure 4 shows the turbulence intensity distributions at
the correspondingx/R stations. The peaks of the turbu-
lence intensity distributions atx/R = 5 and 15 are located
in the middle of the shear layer where the velocity gradi-
ent is the highest. Although the centerline turbulence
level atx/R= 25 is significantly higher, the peak turbu-
lence intensity remains off center, and the turbulence
intensity distribution across the jet is not Gaussian.
According to measured data by Wygnanski and Fiedler

(ref. 22), self similarity of the turbulence intensity is usu-
ally established atx/R values between 50 and 70.

Figure 5 shows computed centerline velocity profiles
for aM = 2.22 jet and the experimental data measured by
Eggers. (See ref. 23.) Like the centerline velocity profiles
for a Mach 2.0 jet shown in figure 2, the solutions
obtained by using different compressibility corrections
are different. With no compressibility correction, the
potential core length is underpredicted. The location of
the end of the potential core appears to agree with the
centerline velocity profile predicted using the Wilcox
model. However, centerline velocity computed by using
equation (6) and the potential core length of the Sarkar
solution Lc/R= 27.15 agrees very well with the data
obtained farther downstream. (See ref. 23.) The agree-
ment between computational and measured data is much
better when compressibility corrections are applied,
although a small difference exists between the Sarkar
model and the Wilcox solutions. Figure 6 shows the cor-
responding results of velocity distributions in thejet
cross section at x/R= 25. The importance of
compressibility correction for supersonic jets is further
illustrated here, as the compressibility-corrected compu-
tations come very close to the measured data, whereas
the uncorrected computation underpredicts the centerline
velocity by nearly 40 percent.

A group of on-design jet plumes with exit Mach
numbers ranging from 0.6 to 3.0 is computed to illustrate
the trend of turbulent mixing as a function of Mach num-
ber. Figure 7 shows typical turbulence intensity distribu-
tions ut/Ue in the longitudinal plane of symmetry of the
jet at three different Mach numbers: 0.8, 1.2, and 1.6.
The contours in figure 7 show that turbulence is absent in
the potential core region. Intense levels of turbulence
start to develop at the lip of the jet nozzle exit. The posi-
tion of the maximum turbulence intensity in the initial
zone of the shear layer occurs near the lip line of the jet.
As the shear layer evolves farther downstream, the posi-
tion of maximum turbulence intensity migrates towards
the jet centerline. This general pattern remains the same
for all on-design circular jets computed within the Mach
number range from 0.6 to 3.0. The length of the potential
core and the value of maximum turbulence intensity vary
as a function of Mach number. Figure 8 summarizes the
computed turbulence intensity distributions along the jet
centerline as a function of Mach number. The Wilcox
compressibility correction is used for these computations
because the definition of the Wilcox correction provides
a consistent blending of compressibility correction for
subsonic and supersonic flow regions.

The potential core length is usually defined as the
distance from the jet exit to the beginning of centerline
velocity decay. An important equation for potential core
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length as a function of jet Mach number is given by Lau,
Morris, and Fisher in reference 24 as:

(7)

Core length is obtained by an empirical curve fit to a
large collection of measured values for potential core
length in subsonic and supersonic jets.

Figure 9 shows the potential core lengths computed
with the standard Jones-Launder two-equationk-ε turbu-
lence model with the Sarkar and the Wilcox compress-
ibility corrections. The core length is defined as the point
where the value of the centerline jet velocity has dropped
to 0.99 times the jet exit velocity. The potential core
length derived with the Wilcox compressibility correc-
tion is higher than the value computed in equation (7) for
the entire Mach number range. Values obtained by using
the Sarkar compressibility correction are higher than the
Wilcox results. However, the trends of core length varia-
tion as a function of Mach number are similar in all three
sets of results. An alternate value of the potential core
lengths can be obtained from the computed jet flow solu-
tion when the end of potential core in the jet flow is
defined as the point where turbulence intensity level
exceeds a threshold ofurms= 0.01 along the jet center-
line. The core lengths obtained by the turbulence inten-
sity definition (also shown in fig. 9) agree very well with
the values obtained with the velocity decay criterion.

The difference between the computed and the empir-
ical curve fit formula based on measured values origi-
nates from several sources. In the work by Lau, Morris,
and Fisher, the experimental database contains measured
potential core length values for jets operating at different
temperatures. Equation (7) is a curve fit for isothermal
jets where the jet static temperature is the same as the
ambient temperature, whereas the jet total temperature is
higher than the ambient total temperature. Many data
points for cold jets, where the jet total temperature is the
same as the ambient air temperature and therefore the jet
static temperature is colder than the ambient temperature,
are above the curve fit of equation (7). In this report, the
jet flows are computed as cold jets.

A second source of discrepancy may come from
modeling boundary conditions in the computations. For
jet flows in the laboratory, the boundary layer within the
jet nozzle has a finite thickness at the nozzle exit. The
initial turbulence level and the thickness of the nozzle
boundary layer give the jet mixing layer an earlier start in
its development. Therefore, the computed core length
will be shorter if the initial boundary layer at the jet noz-
zle exit is included in the computations. In addition to
these circumstances, grid density and accuracy of turbu-
lence modeling are important factors to be considered for

further refinements of the computational method for jet
flow predictions.

It is significant that the mean flow and turbulence
levels of on-design circular jet plumes are predicted over
such a wide range of Mach numbers by using the stan-
dard Jones-Launderk-ε turbulence model and the Wilcox
compressibility correction without changing the pub-
lished constants for the turbulence model. In a broader
context, the modeling of jet plumes is often required in
propulsion and airframe integration. A consistent compu-
tational analysis for such jet plume modeling using the
Navier-Stokes method should not permit ad hoc changes
to the turbulence model. The results of this parametric
investigation indicate that ad hoc modifications to the
standard Jones-Launder turbulence model are not needed
for jet flow analysis.

Off-Design Jets Containing Weak Shocks

This section shows the flow properties of a Mach 2
jet containing weak shocks using solutions obtained
within a limited range of nozzle pressure ratios. The
space-marching solver procedure in the PAB3D code is
used to compute these jet flows. At Mach 2, the jet flow
is free from Mach disk formation for values of NPR
between 4.6 and 13.8, which correspond to a ratio of jet
exit to ambient pressurepe/po between 0.6 and 1.8. Fig-
ure 10 shows a density contour for a typical under-
expanded jet. At the jet exit, a curved shock near the lip
line of the jet nozzle is formed to resolve the pressure
difference between the ambient flow and the flow inside
the jet. An internal weak shock system which reflects
repeatedly between the shear layer and the jet centerline
also exists in the jet.

Figure 11 shows the computed pressure distribution
along the jet axis forpe/po = 0.8, 1.2, 1.4, 1.6, and 1.8.
Only one overexpanded case is included in this collection
(pe/po = 0.8). The pressure distribution of the over-
expanded jet is characterized by a sharp shock front and
pressure peak close to the jet exit. This feature is not
found in underexpanded jets. Beginning with the second
peak, the features of overexpanded jet pressure oscilla-
tions on the jet centerline follow the same trend as the
patterns shown for underexpanded jets. For the under-
expanded jets, the cycle of pressure oscillation begins
with a smooth expansion. The flow is then recompressed
towards the first pressure peak in two stages. The pres-
sure rises sharply about halfway then recompresses grad-
ually the rest of the way. Although not shown in
the figure, expansion and recompression processes are
smooth for subsequent periods of oscillation. Refer-
ence25 gives further discussion of the centerline pres-
sure distributions of off-design jet flows at Mach 2.

Lc
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Extensive flow visualization measurements of super-
sonic jets at off-design conditions were obtained by Love
et al. (See ref. 5.) Shock formation in the jet flow is char-
acterized by two lengths:l1, the distance from the jet exit
to the first shock intersection with the jet centerline; and
W, the distance from the jet exit to the first shock inter-
section with the sonic line in the shear layer. Figure 10
shows definitions of these lengths. Figure 12 shows the
computed values and measured values ofl1 and W
(ref. 5) for several overexpanded and underexpanded val-
ues of NPR. Excellent agreement is demonstrated by the
results in figure 12.

Figure 13 details computed centerline pressure dis-
tributions and experimental data for aMach 2.0 jet
at pe/po = 1.445 (NPR= 11.3). Three solutions are
obtained by using the basick-ε turbulence model with no
compressibility correction, the Sarkar correction, and the
Wilcox correction. The solution without compressibility
correction shows that the amplitude of pressure oscilla-
tions diminishes rapidly downstream and predicted
wavelength is much shorter than the experimental data in
the downstream region of the jet. The solutions obtained
with a compressibility-correctedk-ε turbulence model
show excellent agreement with measured data. Differ-
ences between the Sarkar and Wilcox corrections are
small. The amplitudes of the computed solutions closely
follow the test data, but their phase relations with re-
spect to the measured data are somewhat different.
At x/R= 40, the Wilcox solution leads the measured data
by approximately one sixth of one period, whereas the
Sarkar solution lags behind the measurements by approx-
imately half that amount. All three solutions are very
similar near the jet exit. However, the amplitude of the
first pressure peak near the jet exit is underpredicted by
approximately 15 percent.

Figure 14 shows the computed values for the axial
turbulence velocity component and the measured data
obtained by Seiner, Dash, and Wolf (ref.26). The inter-
action between the repeated shock-cell structure and the
turbulence produces a significant periodic modulation of
the axial turbulence velocity component. The magnitude
of the fluctuation is in phase with the pressure fluctuation
in the jet. (See fig. 13.) Good agreement in both phase
and amplitude is seen between the computed solutions
and the measured data. The compressibility-corrected
solutions provide better agreement with the measure-
ments than the uncorrected solution. It is encouraging to
find from this comparison that the standard Jones-Laun-
der k-ε model is capable of accurate predictions of the
turbulence velocity in a shock-containing supersonic jet.
For practical applications such as jet noise prediction, an
estimate of turbulence intensity in the jet flow is needed.
A computational capability for predicting turbulence
intensity distributions in the jet flow is highly desirable

because measurement of turbulence in high speed flow is
exceedingly difficult.

Better predictions of the turbulent velocity fluctua-
tions in a supersonic jet can be obtained with further
improvement of the turbulence model. In standardk-ε
turbulence models, the local turbulence kinetic energy is
attributed equally to all three turbulence velocity compo-
nents. However, it is known that the magnitude of the
axial component is higher than those of the transverse
components in the jet shear layer. Therefore, a better
redistribution relationship of the turbulent kinetic energy
and the Reynolds stress tensor components would raise
the value of the computed . Furthermore, the mod-
ulation of the axial turbulence velocity component by the
internal shock waves would be stronger, since the ampli-
tude of shock turbulence interaction is roughly propor-
tional to the shock strength and the magnitude of the
axial component of the velocity fluctuations.

Use of the space-marching algorithm to obtain a jet
flow solution requires less than 100 seconds of CPU time
on the Cray Y-MP computer at the Langley Research
Center. Use of the time-marching solver to obtain a con-
verged solution for the same cases typically requires
2000 seconds of CPU time. The ratio of computer time
required when using the time-marching solver increases
by a factor of 20. Figure 15 presents jetcenterline pres-
sure distributions obtained by using the space-marching
and time-marching solvers. The flow solutions obtained
by these two different procedures are practically the
same. Detailed discussion of this comparison can be
found in reference 27.

Off-Design Supersonic Jets Containing a Mach
Disk

Mach disks may appear in a supersonic jet if the
operating NPR is significantly different from NPR
design value. The conditions for Mach disk formation for
a given nozzle depend on nozzle design Mach number
and details of the nozzle geometry, such as the nozzle
wall exit angle. Mach disk formation can occur in both
overexpanded and underexpanded conditions. For a
Mach 2.0 nozzle with on-design NPR of 7.82, Mach disk
appears if the operating NPR is less than 4.6 or greater
than 13.8. For a nozzle withM = 1.5 with an on-design
NPR value of 3.67, a Mach disk will form in the jet for
NPR less than 2.7 or greater than 6.1.

For jet flow computations where Mach disk forma-
tion is expected, the time-marching solver in the PAB3D
code is used. A different computational grid is also
required. When the case of a Mach disk containing jet
flow is originally computed with the on-design jet grid,
the Mach disk is never formed in the converged solution.
The shock front initiated at the nozzle exit propagates as

ut/Ue
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a weak shock all the way to the jet centerline and then
continues as a regular reflected weak shock. In the
on-design grid, the cell streamwise versus radial aspect
ratio is 4. Although the PAB3D code solver is designed
as an upwind algorithm, certain numerical errors in the
transonic regime prevent the proper formation of a Mach
disk in the flow solution. Because general patched grid
capability is available in the PAB3D code, a new grid is
created so that the grid forx/R from 0 to 2 has a grid dis-
tribution similar to the on-design jet grid but with double
the density in each direction. Forx/R from 2 to 10, a
uniformly sized grid distribution is retained in the
streamwise direction. In the radial direction, a uniform
grid distribution is provided fory/R from 0 to 2 so that
cell aspect ratio in the entire region is 1.0. An exponen-
tially expanding grid is used fory/R from 2 to 8 to cover
the free-stream domain outside the jet flow. Figure 16
shows a sketch of this revised grid. The overall grid
domain is divided into four blocks for computational
convenience. The correct Mach disk containing solution
is obtained by using this revised grid.

A solution for a Mach 1.5 jet operating at
NPR =11.6 (pe/po = 3.15) is obtained. Figure 17 shows
the density and Mach number distributions in the jet. A
well-formed Mach disk is located atx/R= 4.4. The
radius of the Mach disk is approximately 0.68R in the
computed solution. The location of this Mach disk agrees
with the measurements given in reference 5. However,
the computed radius of the Mach disk is smaller than the
corresponding measured value. The reflected weak shock
and a slip line initiated at the outer edge of the Mach disk
is clearly shown by the computed density contours. The
contour value indicates that the Mach number upstream
of the Mach disk has accelerated to values greater
than 4.0, whereas the Mach number downstream of the
first Mach disk is reduced to values below 0.2. Down-
stream of the first Mach disk, the flow near the centerline
again accelerates to supersonic speeds nearx/R = 8.0. A
second Mach disk is subsequently formed atx/R= 8.6.
Though much weaker, the second Mach disk can be seen
in a schlieren photograph for a jet operating at nearly the
same jet initial conditions. (See ref. 5.)

Since the time-marching computations for the Mach
disk case are executed by using grid sequencing, con-
verged solutions at three grid levels are obtained during
the process. Figure 18 shows the Mach number contours
using the one-fourth and one-half linear grid density in
the j- andk-directions. Even at the quarter density grid
level, the first Mach disk is captured in the solution. Both
the location and the radius of this Mach disk are estab-
lished in this coarse grid. In the half density grid, the sec-
ond Mach disk emerges in the solution. Only minor
changes in the flow physics are detectable between the

half density grid solution and the full density grid solu-
tion, as shown earlier in figure 17.

Adaptive Grid Computations of
Nonaxisymmetric Jets

For jet flow computations using an adaptive grid, a
quarter plane symmetry for the jet is assumed. The grid is
divided into two domains: a high grid density inner
domain near the jet flow, and an outer domain with
reduced grid density to cover the free-stream domain
away from the jet flow. A Cartesian grid topology is used
in the inner domain to accommodate a wide range of jet
exit geometries. The outer domain has a polar topology
with significantly less grid density than the inner domain.
Figure 19 shows a sketch of the grid cross section. Refer-
ence 28 shows that the computational simulation of a cir-
cular jet remains perfectly axisymmetric even though the
grid is Cartesian. Furthermore, the adaptive grid proce-
dure provides adequate grid densities to support accurate
computations in the jet shear layer and in regions near a
shock front.

This section discusses computed solutions for an
elliptic, a rectangular, and a square jet using the adaptive
grid method. The elliptic jet is known for its unusual
mixing characteristics. The rectangular jet family, which
includes the square jet as a special case, is widely used
for propulsion integration in advanced aircraft systems.
Both elliptic and rectangular jets are capable of switching
their major and minor axis directions in different cross
sections along the jet. An initial Mach number of 2.0 and
an operating NPR of 11.31 are chosen for all three con-
figurations. The operating NPR corresponds to an exit
static pressure ratio ofpe/po = 1.445. In addition, the
Mach 2 elliptic jet is also computed at its on-design flow
condition at NPR = 7.82.

Figure 20 shows the computed Mach number con-
tours for the underexpanded elliptic jet in the major and
the minor planes of symmetry. The elliptic cross section
at the nozzle exit plane has an aspect ratio of 2.0. The
shock fronts are clearly defined by the Mach number
contours in the major plane of symmetry. The shock
reflection pattern in the core region of the jet is quite reg-
ular. In the plane containing the minor axis, the shock is
initially reflected in the shear layer with a scale propor-
tional to the minor axis length. However, the short wave
pattern quickly disappears at approximatelyx/R= 6. Far-
ther downstream in the jet, only the long wave pattern
dominated by the length scale of the major axis remains.
Another unique feature in figure 20 is the expansion rate
of the outer jet boundary. In the plane containing the
major axis, the jet boundary expands slowly in the radial
direction. In contrast, the jet boundary in the plane
containing the minor axis expands rapidly in the radial
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direction. By approximatelyx/R= 15, the width of the
elliptic jet in the original minor axis direction has
exceeded the jet width in the original major axis direc-
tion. Hence, this computation indicates an axis switching
phenomenon for a supersonic elliptic jet.

When using similarity analysis, the major and the
minor axes of the initial cross section are considered two
independent reference scale lengths for the jet flow. A
simple consequence of assuming two independent refer-
ence scales would be that the internal shock reflection
pattern would repeat in two directions along two differ-
ent scales. On the other hand, the difference between
these two scales must be resolved within the jet flow to a
common scale since shock fronts cannot cross each other
without some type of interaction. The computed result
demonstrates the complexity of such aerodynamic inter-
actions. In the plane of symmetry containing the minor
axis, the internal shock wave length is initially governed
by the minor axis scale. However, the shear layer posi-
tion expands rapidly outward in the minor plane of sym-
metry; thus, the reflection length scale of the downstream
shock wave pattern is changed. In the major plane of
symmetry, the width of the jet in this plane remains
approximately constant; thus, the reference scale of the
jet in the minor axis direction is allowed to catch up. The
nonlinear interaction within the jet flow eventually leads
to a unified scale length for the shock cell system.

Figure 21 shows the Mach number contours in an
on-design elliptic jet at Mach 2.0. In the absence of a
shock structure in the jet, the Mach number distribution
in both the major and minor planes of symmetry is
smooth and indistinguishable from the previously com-
puted Mach number distributions in circular jets. Similar
to the underexpanded elliptic jet case, the shear layer
growth in the minor plane of symmetry is faster than the
growth in the major plane of symmetry. Atx/R= 40, the
widths of the jet as seen in both planes of symmetry are
almost equal. However, axis switching does not occur in
the on-design case.

In order to examine the possibility of axis switching,
cross section Mach number contours are shown for these
four jets in figures 22–25. The exit cross section aspect
ratio for the elliptic and the rectangular jet exit shapes
is 2.0. The Mach number contours in each of the
cross sections show only a narrow band fromM = 0.8
to M = 1.2 with a contour interval of 0.1 to highlight the
shape of the cross section. Figure 22 shows the evolution
of the elliptic underexpanded jet cross sections. At the
exit, the major axis of the elliptic cross section is oriented
in the horizontal direction. The jet boundary grows
rapidly in the vertical direction. Atx/R= 30, the major
axis of the elliptic cross section has clearly switched

to the vertical direction. The aspect ratio of the ellipse at
x/R= 30 is approximately 1.50.

Figure 23 shows the equivalent sequence for a rect-
angular jet. Jet boundary growth in the vertical direction
is even faster than that of the elliptic jet. Atx/R= 30, the
aspect ratio of the shape is approximately 1.70. The cor-
ners of the original rectangular shape have been rounded
off in the process of turbulent mixing.

Figure 24 shows the evolution sequence for a square
jet. In this case, the original square shape for the Mach
number contours evolves rapidly in the jet flow. At
x/R= 12, the corners of the square are actually trans-
posed by 45°, with the corner sharpness well preserved.
As the shear layer grows thicker farther downstream, the
shape of the jet cross section quickly losses its distinction
as a square and eventually becomes circular.

Figure 25 shows the shape evolution sequence for an
elliptic jet with on-design exit pressure ratio. Although
the jet grows mainly in the vertical direction, axis switch-
ing does not occur in this on-design jet flow. The jet sim-
ply becomes a near-circular jet atx/R= 30. At the last
computed streamwise position atx/R= 40, the cross sec-
tions for all four jets simply retain their geometrical char-
acters similar to those established atx/R= 30.

Figure 26 shows the Mach number contours in the
plane of symmetry of the square jet and its centerline
Mach number distribution. Qualitatively, these distribu-
tions are very similar to the corresponding distributions
shown in figure 27 for a circular jet operating at the same
exit Mach number and NPR. The visually striking
dynamic behavior of the square jet axis (fig. 24) shows
that switching apparently has little influence on flow
development near the jet centerline. It should be pointed
out that the square jet and the circular jet, with a common
reference dimension of 1.0, have different jet exit areas.
In order to compare the streamwise jet flow development
on a normalized basis, the length scale for the square jet
in figure 24 should be reduced by a factor of

. With this scale adjustment, the phase
and amplitude of the centerline Mach number oscilla-
tions of the square jet and the circular jet agree almost
exactly starting from the second peak.

In order to provide some validation for the adaptive
grid computation procedure for nonaxisymmetric jets, a
Mach 2.0 on-design circular jet solution computed by
using the axisymmetric grid is compared with the same
jet computed by using a three-dimensional adaptive grid.
Two levels of adaptive grid densities are also used to ver-
ify grid convergence: 40× 40 cells and 56× 56 cells for
the inner high density grid cross sections. Figure 28
shows the axisymmetric grid solution forM = 2.0. The
adaptive grid results are shown in figures 29 and 30.

π 4⁄ 0.8862=



14

Nearly identical solutions for the turbulence intensity
distribution in the meridian plane and along the center-
line of the jet are obtained for the two adaptive grid
densities. For example, the maximum turbulence level in
the jet plume is 0.134 for both the 40× 40 cell and the
56 × 56 cell solutions. The solution using an axisymmet-
ric grid differs slightly from the adaptive grid results in
two aspects. First, the maximum turbulence level in the
middle of the shear layer is slightly higher, with a value
of 0.142. Second, the turbulence intensity profile along
the centerline is shifted upstream by approximately
x/R= 2.0.

The reason for the different maximum intensity in
the shear layer is not clear. However, the spatial shift of
the turbulence intensity profile along the centerline has a
geometrical explanation. It is difficult for the grid adap-
tion algorithm to handle very large velocity gradients
such as those occurring near the jet exit. Consequently, it
is not possible to specify an initial shear layer thickness
of less than 0.05 jet radius at the jet exit plane. Since the
initial shear layer is thicker, the inner boundary of the
turbulent shear layer intersects with the centerline at a
smaller value ofx/R. In fact, with a downstream shift of
the adaptive grid centerline turbulence intensity profile,
the turbulence intensity profile can be matched perfectly
with results using the axisymmetric grid.

Concluding Remarks

The main purpose of this report is to establish a uni-
fied method for jet flow prediction using the Navier-
Stokes method with a two-equationk-ε turbulence clo-
sure model. Although the jet flow may contain a variety
of complex flow physics features, the Navier-Stokes
method simply requires that the initial condition and
boundary conditions of the jet operating conditions be
specified for the problem. Detailed flow physics devel-
opments in the jet are predicted by the Navier-Stokes
method. The validity of this approach is demonstrated by
the high quality jet flow solutions obtained with the
PAB3D code.

This study examines several categories of jet flow
conditions. For on-design subsonic and supersonic axi-
symmetric jets, the flow field is dominated entirely by
turbulent mixing. Numerical solutions within a Mach
number range of 0.6 to 3.0 are accurate when compared
with available experiment data for parameters such as
mean velocity and turbulence intensity distributions in
the jet, centerline velocity decay, and the potential core
length variation as a function of Mach number.

For off-design supersonic jet flows containing weak
shocks, flow predictions are compared with experimental
data. Good agreement is obtained between the computed
results and experimental data for key parameters, includ-
ing first shock-cell lengths and centerline pressure distri-
bution. The predicted distributions of the streamwise
component of turbulence velocity fluctuation in an
underexpanded Mach 2.0 jet show good agreement with
measured data.

Turbulence intensity in the jet flow is an important
quantity for jet noise prediction. Since direct measure-
ment of turbulence in a supersonic jet is very difficult to
make, a predictive capability provided by the PAB3D
code is very useful for practical applications. Good
agreement between predictions and experimental mea-
surements has also been obtained for a Mach 1.5 jet oper-
ating at 3.15 times its design nozzle pressure ratio where
Mach disks are present in the jet flow.

Many of the modern propulsion jet nozzles employ
nonaxisymmetrical exit geometries. The adaptive grid
method examined in this study has produced good results
for elliptic, rectangular, and square jets. However, the
computed results are not verified for lack of experimental
data. The accuracy of the adaptive grid procedure is illus-
trated by a comparison between an adaptive grid solution
of an axisymmetric jet and a solution for the same jet
using a single cell wedge grid. Although the adaptive
grid has a Cartesian-topology and the single-cell wedge
grid has cylindrical symmetry boundary conditions, the
solutions are essentially identical.

For most jet flows where strong shocks are absent in
the computational domain, the space-marching solver in
the PAB3D code can be used. When the space-marching
option is used for jet flow computation as conditions per-
mit, the computer time is one twentieth of the time
required for obtaining a time-marching solution with the
same flow conditions. The accuracy of the solutions
obtained by these different solvers is practically indistin-
guishable. Substantial savings in computer time can be
realized by using the space-marching method in the
PAB3D code if the analyses of many cases of jet flow
conditions are required for design applications.

NASA Langley Research Center
Hampton, VA 23681-0001
May 23, 1996
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(a)  Typical on-design jet flow configuration and terminology.

(b)  Single cell wedge grid for on-design jet flow computations.

Figure 1.  Sketch of typical axisymmetric on-design jet flow and computational grid.
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Figure 2.  Centerline velocity decay for subsonic and supersonic jet flows computed with standard Jones-Launderk-ε
turbulence model with different compressibility corrections.
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Figure 3.  Axial velocity component distribution in cross sections in Mach 0.6 circular jet flow.

Figure 4.  Turbulence intensity distribution in cross sections in Mach 0.6 circular jet flow.
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Figure 5.  Centerline velocity distribution for supersonic jet usingk-ε turbulence model with different compressibility
corrections.

Figure 6.  Axial velocity component distribution along radial direction atx/R= 25 usingk-ε turbulence model with
different compressibility corrections.
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Figure 7.  Typical turbulence intensity distribution in axisymmetric jets computed by using Jones-Launderk-ε turbu-
lence model with Wilcox model of compressibility correction forut/Ue contours.
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Figure 8.  Centerline turbulence intensity profiles of axisymmetric jets at various subsonic and supersonic Mach num-
bers computed by using Jones-Launder two-equationk-ε turbulence model with Wilcox compressibility correction.
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Figure 9.  Potential core length as function of Mach number for subsonic and supersonic jets computed with Jones-
Launderk-ε turbulence model and different compressibility corrections.

Figure 10.  Typical density contours and first shock-cell length definitions for circular underexpanded supersonic jet. Jet
exit Mach number = 1.50;pe/po = 1.445.
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Figure 11.  Computed centerline pressure distribution with different exit pressure ratios for Mach 2.0 jet computed with
Jones-Launderk-ε turbulence model.

Figure 12.  Computed and measured first shock-cell lengths for Mach 2.0 jet computed with Jones-Launderk-ε turbu-
lence model.
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Figure 13.  Centerline pressure distribution computed with Jones-Launderk-ε model with different compressibility cor-
rections forpe/po = 1.445.

Figure 14.  Centerline turbulence intensity computed with Jones-Launderk-ε model with different compressibility cor-
rections forpe/po = 1.445.
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Figure 15.  Space-marching and time-marching solutions for underexpanded Mach 2.0 supersonic jet computed with
Jones-Launderk-ε turbulence model.
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(a)  Mach number contours of typical underexpanded supersonic jet containing multiple Mach disks.

(b)  Multiblock single cell wedge grid for jet flows containing multiple Mach disks.

Figure 16.  Flow configuration and computational grid for underexpanded jet containing one or more Mach disks.
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(a)  Density contours; Interval = 0.40 kg/m3.

(b)  Mach number contour; Interval = 0.25.

Figure 17.  Density and Mach number contours for underexpanded circular jet containing multiple Mach disks.
Exit Mach number = 1.50;pe/po = 3.15; fine grid solution.
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(a)  One-fourth density grid Mach number contours; Interval = 0.25.

(b)  One-half density grid Mach number contours; Interval = 0.25.

Figure 18.  Gridstudy for underexpanded circular jet containing multiple Mach disks. Jet exit Mach number = 1.50;
pe/po = 3.15.
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(a)  Typical density contours of underexpanded elliptic jet in major plane of symmetry.

(b)  Adapted grid cross section at inflow plane.

(c)  Adapted grid longitudinal profile in plane of symmetry containing major axis of initial jet cross section.

Figure 19.  Adapted grid geometry for elliptic supersonic jet. Shape aspect ratio = 2.0.
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(a)  Plane of symmetry containing major axis; Interval = 0.20.

(b)  Plane of symmetry containing minor axis; Interval = 0.20.

Figure 20.  Mach number contours for underexpanded supersonic jet with elliptic exit cross section. Shape aspect
ratio = 2.0; Exit Mach number = 2.00; NPR = 11.12;pe/po = 1.445.

5 10 15 20 25 30 35 400

2

4

6

2.60 2.202.20
0.80

0.20
0.40 0.60 0.60

1.00

y/R

x/R

5 10 15 20 25 30 35 400

2

4

6

2.40

1.00

1.20 1.002.20

0.20
0.40

0.80
0.60

x/R

z/R



31

(a)  Plane of symmetry containing major axis; Interval = 0.20.

(b)  Plane of symmetry containing minor axis; Interval = 0.20.

Figure 21.  Mach number contours in major and minor planes of symmetry of elliptic jet shape ratio of 2.0; On-design
NPR = 7.82.
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Figure 22.  Cross-section shape evolution in streamwise direction of elliptic underexpanded supersonic jet. Shape aspect
ratio = 2.0; Jet exit Mach number = 2.0; NPR = 11.12;pe/po = 1.445.
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Figure 23.  Cross-section shape evolution in streamwise direction of rectangular underexpanded supersonic jet. Shape
aspect ratio = 2.0; Jet exit Mach number = 2.0; NPR = 11.12;pe/po = 1.445.
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Figure 24.  Cross-section shape evolution in streamwise direction of square underexpanded supersonic jet. Jet exit Mach
number = 2.0; NPR = 11.12;pe/po = 1.445.

.4 .8 1.2 1.6 2.0

y/R

M = 1.2 M = 0.8

x/R = 24

.4 .8 1.2 1.6 2.00

.4

.8

1.2

1.6

2.0

y/R

M = 1.2 M = 0.8

x/R = 0

z/R

0

.4

.8

1.2

1.6

2.0

z/R

0

.4

.8

1.2

1.6

2.0

z/R

0

.4

.8

1.2

1.6

2.0

z/R

.4 .8 1.2 1.6 2.0

y/R

M = 1.2 M = 0.8

x/R = 36

.4 .8 1.2 1.6 2.0

y/R

x/R = 12

M = 0.8M = 1.2



35

Figure 25.  Cross-section shape evolution in streamwise direction of on-design elliptic supersonic jet. Shape aspect
ratio = 2.0; Jet exit Mach number = 2.0; NPR = 7.82.
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(a)  Mach number contours in plane of symmetry; Interval = 0.50.

(b)  Centerline Mach number profile.

Figure 26.  Mach number distribution in underexpanded square jet. Exit Mach number = 2.0; NPR = 11.12.
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(a)  Mach number contours in plane of symmetry; Interval = 0.50.

(b)  Centerline Mach number distribution.

Figure 27.  Mach number distribution in underexpanded circular jet. Exit Mach number = 2.0, NPR = 11.12.
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(a)  Turbulence intensity distribution in plane of symmetry;  contours.

(b)  Centerline turbulence intensity distribution.

Figure 28.  Turbulence intensity distribution in circular jet computed by using single cell wedge grid. Exit Mach
number = 2.0; on-design NPR = 7.82.
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(a)  Turbulence intensity distribution in plane of symmetry,  contours.

(b)  Centerline turbulence intensity distribution.

Figure 29.  Turbulence intensity distribution in circular jet computed by using three-dimensional adaptive grids. Exit
Mach number = 2.0; on-design NPR = 7.82 ; medium grid density:j, k = 40.
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(a)  Turbulence intensity distribution in plane of symmetry,  contours.

(b)  Centerline turbulence intensity distribution.

Figure 30.  Turbulence intensity distribution in circular jet computed by using three-dimensional adaptive grids. Exit
Mach number = 2.0; NPR = 7.82; high density adaptive grid:j, k = 56.
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